## **Excess Lithium Intercalation in the Fulleride** Superconductor Li<sub>3</sub>CsC<sub>60</sub>

Serena Margadonna,<sup>†</sup> Kosmas Prassides,<sup>\*,†</sup> Andrew N. Fitch,<sup>‡</sup> Mayumi Kosaka,§ and Katsumi Tanigaki

> School of Chemistry, Physics and Environmental Science University of Sussex, Brighton BN1 9QJ, U.K. European Synchrotron Radiation Facility F-38043 Grenoble, France NEC Fundamental Research Laboratories Tsukuba 305, Japan Faculty of Science, Osaka City University PREST, JST, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585, Japan

> > Received March 30, 1999

Alkali fullerides  $A_2A'C_{60}$  (A, A'= alkali metals) are superconducting with  $T_c$  at ambient pressure ranging from 3.5 K for  $Na_2RbC_{60}^{1}$  to 33 K for  $RbCs_2C_{60}^{2}$ .<sup>2</sup> The only exception is provided by Li<sub>2</sub>CsC<sub>60</sub> and Li<sub>2</sub>RbC<sub>60</sub> which do not show superconductivity down to 50 mK.3 Otherwise, T<sub>c</sub> increases monotonically with increasing interfullerene separation, d, as the density of states at the Fermi level,  $N(\epsilon_{\rm F})$  increases. The absence of superconductivity in the Li fulleride family has been associated with the presence of strong bonding Li<sup>+</sup>-C interactions.<sup>4</sup> These lead to a reduced formal charge of the  $C_{60}^{n-}$  ions in Li<sub>2</sub>A'C<sub>60</sub>, found experimentally as  $\sim 2.5$  by Raman measurements.<sup>5</sup> In an attempt to overcome the Li<sup>+</sup>–C interactions and achieve half filling (n = 3) of the  $t_{1u}$ band, we synthesized the  $Li_x CsC_{60}$  (x = 1.5-6) fullerides.<sup>5</sup> By adjusting x, we can control the electron transfer from Li to  $C_{60}$ and tune the filling level of the conduction band continuously. Half filling is achieved for Li<sub>3</sub>CsC<sub>60</sub> which is a bulk superconductor with  $T_{\rm c} = 10.5 \text{ K}.^5$  In this paper, we discuss the structural properties of the Li<sub>3</sub>CsC<sub>60</sub> superconductor. At low temperatures, it is primitive cubic (space group  $Pa\overline{3}$ ), isostructural with the metastable  $Na_2A'C_{60}$  phases<sup>6</sup> with orientationally ordered  $C_{60}^{3-}$ ions in the unit cell. The tetrahedral and octahedral interstices are occupied by Li and Cs, respectively, while the excess Li (one per C<sub>60</sub> unit) is disordered at the corners of a cube with an edge length of  $\sim$ 3.4 Å, centered at the octahedral sites. On heating to room temperature, a phase transition occurs to a face centered cubic structure (space group Fm3m) which contains orientationally disordered  $C_{60}^{3-}$  ions. These results provide clear evidence of the importance of the Li<sup>+</sup>-C interactions in sensitively controlling the structural, conducting and electronic properties of the family of lithium intercalated fullerides.

The synchrotron X-ray powder diffraction profile (Figure 1a) of  $Li_3CsC_{60}$ <sup>7</sup> at 295 K shows no reflections present which violate

- (1) Tanigaki, K.; Hirosawa, I.; Ebbesen, T. E.; Mizuki, J.; Shimakawa, (2) Tanigaki, K., Tinosawa, I., EDUESEI, T. E.; WIZUKI, J.; Shilhakawa, Y.; Kubo, Y.; Tsai, J. S.; Kuroshima, S. *Nature* 1992, *356*, 419.
  (2) Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. *Nature* 1991, *352*, 222.
  (3) Tanigaki, K.; Ebbesen, T. W.; Tsai, J. S.; Hirosawa, I.; Mizuki, J. Everychev, Lett. 1992, *23*, 57.
- Europhys. Lett. 1993, 23, 57.
- (4) Hirosawa, I.; Prassides, K.; Mizuki, J.; Tanigaki, K.; Gevaert, M.; (5) Kosaka, M.; Tanigaki, K.; Prassides, K.; Margadonna, M.; Lappas, A.;
   (5) Kosaka, M.; Tanigaki, K.; Prassides, K.; Margadonna, M.; Lappas, A.;

Brown, C. M.; Fitch, A. N. Phys. Rev. B 1999, 59, R6628



Figure 1. Final observed (O) and calculated (-) synchrotron X-ray diffraction profiles for Li<sub>3</sub>CsC<sub>60</sub> at (a) 295 and (b) 4 K. In each case, the lower solid line shows the difference profile and the tick marks show the reflection positions. The profiles have been expanded for clarity by a factor of 10 at Bragg angles larger than 17.5°.

fcc rules. Rietveld profile refinements were initiated using the structural model of  $Li_2CsC_{60}$  (space group *Fm3m*).<sup>4,9</sup> The fullerene units were modeled as quasi-spherical orientationally disordered units of radius, R, placed at the 4a (0,0,0) sites, and their scattering density was described in terms of symmetry-adapted sphericalharmonic (SASH) functions.<sup>4,9,10</sup> Refinements proceeded smoothly with the Li<sup>+</sup> and Cs<sup>+</sup> ions placed in the 8c (1/4, 1/4, 1/4) and 4b (1/2, 1/2, 1/2) sites of the unit cell, respectively, resulting in a lattice constant, a = 14.1089(4) Å. The radius, R of the spherical shell is 3.560(2) Å, and the fitted coefficients of the SASH functions are  $C_{6,1} = 0.024(4)$  and  $C_{10,1} = -0.12(1)$ . These imply an orientational distribution function for Li<sub>3</sub>CsC<sub>60</sub>, comparable to that for Li<sub>2</sub>CsC<sub>60</sub> with an accumulation of electronic density along the cubic  $\langle 111 \rangle$  direction, but with a considerably weakened Li<sup>+</sup>-C interaction. Refinement of the Li<sup>+</sup> occupation number of the tetrahedral sites necessitated a value,  $n_{\rm Li}$ , substantially larger

University of Sussex.

<sup>&</sup>lt;sup>‡</sup> European Synchroton Radiation Facility.

<sup>§</sup> NEC Fundamental Research Laboratories.

<sup>&</sup>quot;Osaka City University.

<sup>(6) (</sup>a) Prassides, K.; Christides, C.; Thomas, I. M.; Mizuki, J.; Tanigaki, K.; Hirosawa, I.; Ebbesen, T. W. *Science* **1994**, *263*, 950. (b) Kniaz, K.; Fischer, J. E.; Zhu, Q.; Rosseinsky, M. J.; Zhou, O.; Murphy, D. W. Solid State Commun. **1993**, 88, 47. (c) Prassides, K.; Vavekis, K.; Kordatos, K.; Tanigaki, K.; Bendele, G. M.; Stephens, P. W. J. Am. Chem. Soc. **1997**, 119, 834

<sup>(7)</sup> The Li<sub>3</sub>CsC<sub>60</sub> sample (600 mg) used in the present work was prepared by reaction of stoichiometric quantities of  $C_{60}$ , Li, and Cs contained in a tantalum cell inside a sealed glass tube at 703 K for 2 days; after an intermediate regrinding, the sample was annealed at 703 K for more than 2 months, employing the same experimental setup. Phase purity was confirmed by X-ray diffraction using a Siemens D5000 diffractometer. High-resolution synchrotron X-ray diffraction data on the sample (4 mg) sealed in a 0.5-mm Synchrotron Radiation Facility (ESRF), Grenoble, France at 4 and 295 K ( $\lambda$  = 0.81073 Å) and at 150 K ( $\lambda$  = 0.83502 Å). Data were rebinned in the 2 $\theta$ ranges  $4-72^{\circ}$  to a step of 0.01° (4 K),  $4-55^{\circ}$  to a step of 0.01° (150 K) and  $4-42^{\circ}$  to a step of 0.005° (295 K). Data analysis was performed with the PROFIL suite of powder diffraction programs,8 incorporating form factors for spherically disordered molecules.

<sup>(8)</sup> Cockcroft, J. K. Program Profil, Birkbeck College, London, UK, 1994. 9) Margadonna, S.; Brown, C. M.; Prassides, K.; Fitch, A. N.; Knudsen, K. D.; Le Bihan, T.; Mezouar, M.; Hirosawa, I.; Tanigaki, K. Int. J. Inorg. Mater., in press. (10) Chow, P. C. et al. Phys. Rev. Lett. **1992**, 69, 2943.

than that required for full occupancy, consistent with the expected stoichiometry of the material. A search for the location of the excess intercalated Li<sup>+</sup> proved a formidable task, given the weak X-ray scattering power of this light element. A difference Fourier analysis of the diffraction data revealed the existence of scattered intensity in the vicinity of the 32f(0.375, 0.375, 0.375) sites of the unit cell that define a cube, centered at the (1/2, 1/2, 1/2) position. Thus the Rietveld refinements were repeated after introducing a  $Li^+$  ion in the (0.375,0.375,0.375) sites and allowing for its occupation number to vary. This converged to 1.00(1) per C<sub>60</sub>, implying that the Li<sup>+</sup> defect is disordered over the corners of a cube of size 3.527 Å with an  $\sim 1/8$  occupancy. The refinement results at 295 K are shown in Figure 1a (agreement factors,  $R_{wp}$  $= 7.8\%, R_{exp} = 5.2\%$ ).

However, in contrast to the situation encountered for  $Li_2CsC_{60}$ , which showed no structural phase transitions to liquid helium temperatures,<sup>4,9</sup> the diffraction profiles of Li<sub>3</sub>CsC<sub>60</sub> measured at 150 and 4 K readily revealed the presence of a number of reflections which index to primitive cubic symmetry (lattice constants: a = 14.0545(7) Å at 150 K, a = 14.0261(3) Å at 4 K; space group Pa3). Rietveld refinements of the diffraction data were performed with orientationally ordered  $C_{60}^{3-}$  units in analogy with the structural model developed for Na<sub>2</sub>CsC<sub>60</sub>.<sup>6</sup> The  $C_{60}^{3-}$ ions with an average C–C bond length of  $\sim 1.43$  Å were rotated anticlockwise about the [111] direction by either 98° or 38°, and the Li<sup>+</sup> and Cs<sup>+</sup> ions were originally placed at the unit cell positions identified by the data analysis at 295 K. While the Cs<sup>+</sup> ions are kept at the (1/2, 1/2, 1/2) position, the Pa3 space group allows the displacement of the Li<sup>+</sup> ions (local symmetry  $C_3$ ) from the ideal tetrahedral positions along the [111] cube diagonals. At the same time, the reduction in symmetry necessitates the splitting of the  $Li^+$  defect at (0.375,0.375,0.375) into two symmetryinequivalent positions, those at (*x*,*x*,*x*;  $x \approx 0.375$ ) and (*x*,*y*,*z*;  $x \approx$ y,  $x \approx z + \frac{1}{2}$ ,  $z \approx 0.375$ ). Stable Rietveld refinements of both datasets were achieved with this structural model with the results shown in Figure 1b (150 K:  $R_{wp} = 11.7\%$ ,  $R_{exp} = 8.4\%$ ; 4 K:  $R_{wp} = 10.7\%$ ,  $R_{exp} = 6.7\%$ ). The fraction of the  $C_{60}^{3-}$  ions at 98° converged to 86(2) and 82(1)% at 150 and 4 K, respectively, comparable to the values of 88(1)% in Na<sub>2</sub>CsC<sub>60</sub><sup>6</sup> and 84(1)% in CsC<sub>60</sub>.<sup>11</sup> The geometry of the Li<sup>+</sup> defect whose position and occupation number were allowed to vary12 is also defined well at low temperatures. Its positional parameter converged to x =0.381(9) at 150 K and 0.378(5) at 4 K and its occupancy to 0.97-(2) per  $C_{60}$  at 150 K and 0.99(1) per  $C_{60}$  at 4 K, implying disorder over the corners of a cube with edge size 3.35(19) Å at 150 K and 3.41(9) Å at 4 K and an  $\sim 1/8$  occupancy. The positional parameters of the Li<sup>+</sup> ions in the tetrahedral interstices, (x,x,x,x) $\approx 1/4$ ) were also varied, converging to x = 0.244(3) at 150 K and 0.243(2) at 4 K. The projection of the primitive cubic structure of Li<sub>3</sub>CsC<sub>60</sub> on the basal plane of the unit cell is shown in Figure 2a.

Figure 2b shows an expanded view of the alkali metal coordination along the [111] cube diagonal. While the tetrahedral and octahedral interstices are fully occupied by Li<sup>+</sup> and Cs<sup>+</sup> ions, respectively, the excess Li<sup>+</sup> is disordered over the corners of a cubic (Li1/8)8 cluster. Such metal clusters, incorporated into fullerene structures, have been encountered before<sup>13</sup> in the sodium fullerides  $Na_6C_{60}$  and  $Na_{11}C_{60}$ . The small size of  $Li^+$  ( $r_{Li} = 0.60$ Å) is of paramount importance in minimizing steric crowding



Figure 2. (a) Unit-cell basal plane projection of the primitive cubic Li<sub>3</sub>- $CsC_{60}$  structure at low temperatures. The  $C_{60}$  units at the center of the (110) face have been removed for clarity. (b) Schematic diagram of the alkali metal coordination in Li<sub>3</sub>CsC<sub>60</sub> along one of the body diagonals. The Cs<sup>+</sup> and Li<sup>+</sup> ions are depicted as large dark and small light spheres, respectively. The defect Li<sup>+</sup> ions are shaded to a lighter tone than the tetrahedral ones.

and thus allowing the incorporation of excess Li in the space surrounding the octahedral interstice. The closest distances at 4 K between the Li<sup>+</sup> defects and the Li<sup>+</sup> ions in the tetrahedral interstices vary between 3.07(6) and 3.28(6) Å, while those between the Li<sup>+</sup> defects and Cs<sup>+</sup> ( $r_{Cs} = 1.69$  Å) are 2.95(6) Å. In both cases, no unfavorable steric influence is evident. Moreover, the edge size of the  $(Li_{1/8})_8$  cluster is ~3.40 Å, larger than the Li-Li distance of 3.04 Å in Li metal. Finally, examination of all Li+-C60 contacts reveals shortest distances of  $\sim 2.7$  Å for the Li<sup>+</sup> in the tetrahedral site and  $\sim 2.5$  Å for the Li<sup>+</sup> defect. These are comparable to those in sodium fullerides<sup>6</sup> and larger than the sum of the ionic radius of Li<sup>+</sup> and the van der Waals radius of C.

In conclusion, we have shown that superconducting  $Li_3CsC_{60}$  $(T_{\rm c} = 10.5 \text{ K})$  adopts a primitive cubic structure in which the C<sub>60</sub> units are orientationally ordered. While the tetrahedral and octahedral interstices are fully occupied, the excess Li (one per  $C_{60}$  unit) is disordered over the corners of a cube of size  $\sim 3.4$  Å, centered at the octahedral Cs<sup>+</sup> site. No anomalous close contacts between either the alkali metal ions or between  $Li^+$  and the  $C_{60}$ units are encountered. The observed geometry of the Li defect is consistent with the existence of additional overdoped Li<sub>x</sub>CsC<sub>60</sub> phases<sup>5</sup> with x between 4 and 6. On heating to room temperature, a phase transition to fcc, with orientationally disordered  $C_{60}^{3-}$ ions occurs. The geometry of the Li<sup>+</sup> defect is unaffected by this phase change.

Acknowledgment. We thank NEDO FCT for financial support, the European Synchrotron Radiation Facility (ESRF) for provision of synchrotron X-ray beamtime, and C. M. Brown and A. Lappas for help with the experiments. K.T. also thanks the Sumitomo Foundation for partial support.

<sup>(11)</sup> Lappas, A.; Kosaka, M.; Tanigaki, K.; Prassides, K. J. Am. Chem. Soc. 1995, 117, 7560.

<sup>(12)</sup> As the Li<sup>+</sup> defect occupies the 8c  $(x_1,x_1,x_1)$  and 24d  $(x_2,y_2,z_2)$  symmetryinequivalent sites in space group  $Pa\bar{3}$ , the Rietveld refinements were performed Inequivalent sites in space group Pa3, the Rietveld refinements were performed using the following constraints on the coordinates and occupancies of the two sites:  $x_1 = z_2$ ,  $x_2 = y_2 = z_2 + \frac{1}{2}$ ,  $n_2 = 3n_1$ . Furthermore, its temperature factor,  $B_{iso}$  was fixed to 1.5 Å<sup>2</sup> (at 4 K), while that of the terahedral Li was refined, converging to 2.3(2) Å<sup>2</sup>. (13) Rosseinsky, M. J.; Murphy, D. W.; Fleming, R. M.; Tycko, R.; Ramirez, A. P.; Siegrist, T.; Dabbagh, G.; Barrett, S. E. *Nature* 1992, 356, 416; Yildirim, T.; Zhou, O.; Fischer, J. E.; Bykovetz, N.; Strongin, R. A.; Cichy, M. A.; Smith, A. B.; Lin, C. L.; Jelinek, R. *Nature* 1992, 360, 568.